?
当前位置:澳门黄金赌城 > 小柯机器人 >详情
全反铁磁隧道结的室温磁电阻
作者:小柯机器人 发布时间:2023/1/26 15:08:04


北京航空航天大学蒋成保、刘知琪等,中科院苏州纳米技术与纳米仿生研究所曾中明,华中科技大学张佳小组研究了全反铁磁隧道结的室温磁电阻。该项研究成果发表在2023年1月18日出版的《自然》上。

这里研究团队描述了共线反铁磁体MnPt和非共线反铁磁体Mn3Pt之间的室温交换偏置效应,它们一起类似于铁磁-反铁磁交换偏置系统。基于这种奇异效应,研究人员建立了具有大非易失性室温磁电阻值的全反铁磁隧道结,其最大值达到约100%。原子自旋动力学模拟表明,MnPt界面处的无补偿局部自旋产生了交换偏置。

第一性原理计算表明,显著的隧穿磁电阻源于动量空间中Mn3Pt的自旋极化。全反铁磁隧道结器件,具有几乎消失的杂散场和高达太赫兹水平的强烈增强自旋动力学,对于下一代高度集成和超快存储器件非常重要。

据介绍,反铁磁自旋电子学是凝聚态物理和信息技术中一个快速发展的领域,具有高密度和超快信息器件的潜在应用。然而,这些器件的实际应用在很大程度上受到室温下小电流输出的限制。

附:英文原文

Title: Room-temperature magnetoresistance in an all-antiferromagnetic tunnel junction

Author: Qin, Peixin, Yan, Han, Wang, Xiaoning, Chen, Hongyu, Meng, Ziang, Dong, Jianting, Zhu, Meng, Cai, Jialin, Feng, Zexin, Zhou, Xiaorong, Liu, Li, Zhang, Tianli, Zeng, Zhongming, Zhang, Jia, Jiang, Chengbao, Liu, Zhiqi

Issue&Volume: 2023-01-18

Abstract: Antiferromagnetic spintronics1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16 is a rapidly growing field in condensed-matter physics and information technology with potential applications for high-density and ultrafast information devices. However, the practical application of these devices has been largely limited by small electrical outputs at room temperature. Here we describe a room-temperature exchange-bias effect between a collinear antiferromagnet, MnPt, and a non-collinear antiferromagnet, Mn3Pt, which together are similar to a ferromagnet–antiferromagnet exchange-bias system. We use this exotic effect to build all-antiferromagnetic tunnel junctions with large nonvolatile room-temperature magnetoresistance values that reach a maximum of about 100%. Atomistic spin dynamics simulations reveal that uncompensated localized spins at the interface of MnPt produce the exchange bias. First-principles calculations indicate that the remarkable tunnelling magnetoresistance originates from the spin polarization of Mn3Pt in the momentum space. All-antiferromagnetic tunnel junction devices, with nearly vanishing stray fields and strongly enhanced spin dynamics up to the terahertz level, could be important for next-generation highly integrated and ultrafast memory devices7,9,16.

DOI: 10.1038/s41586-022-05461-y

Source: https://www.nature.com/articles/s41586-022-05461-y

期刊信息

Nature:《自然》,创刊于1869年。隶属于施普林格·自然出版集团,最新IF:69.504
官方网址:http://www.nature.com/
投稿链接:http://www.nature.com/authors/submit_manuscript.html

?